Unit 2: Elements of a Vulnerability Assessment: Exposure

Exposure

Measure of how much of a change in climate or other environmental factor a species or system is likely to experience

Primary factors

Shifts in temperature, precipitation

Secondary factors

- Sea-level rise
- Hydrologic changes
- Shifting sea ice dynamics

Global Climate Models (GCMs)

- Based on principles of thermodynamics and fluid dynamics
- Describe complex interaction between atmosphere, cryosphere, oceans, land, and biosphere

Global Climate Models (GCMs)

Global Climate Models (GCMs)

- Global climate models
 - Based on principles of thermodynamics and fluid dynamics
 - Describe complex interaction between atmosphere, cryosphere, oceans, land, and biosphere
 - Large-scale (~100 km² but constantly

decreasing)

Modeling climate: scale

Projecting Global Climate Models

Projections for changes in climatic variables (e.g., average temperatures, precipitation) based on one or more scenarios for emissions of greenhouse gases, particulates, other factors

Factors to consider

- Uncertainties in scenarios (depend on policy, economics, population, etc.)
- Variation among output from different modeling teams
- Confidence in results often higher in nearer term, also higher for temperatures than precipitation

Which Scenarios to Use?

Factors to consider

- Length of your planning horizon
- Sensitivity of key species or processes (helps ID variables to consider)
- Relationship to current trends
- Level of acceptable risk

Level of detail

- Specific numbers
- A range of numbers
- Directionality

Downscaling GCMs

- Using models (and sometimes observations) to convert GCM data to smaller grid sizes (50 – 1 km²)
- Multiple techniques available
 - Dynamic
 - Statistical
 - Change-factor (Delta method)

Downscaling Projected GCMs: techniques

- Multiple techniques available
 - Dynamic: modeling embeds regional climate model w/in GCM (RCM can account for local surface-rainfall interactions, cloud formation, etc)
 - Statistical: statistical relationship identified between
 GCM and local variables (ex: GCM atmospheric pressure forecasts and local rainfall) relationships used to downscale GCM for specific areas
 - Change-factor (Delta method): historical values from observations subtracted from GCM values – differences are used to correct modeled values at smaller scale

Is Downscaled Information Necessary?

Factors to consider

- Scale of area being managed
- Complexity of area being managed

Observations HCN Summertime Max Temp: 1990s 287.5 286 292.5 290 287.5 286

Benefits and limitations

- Data often more relevant for management scale
- Not necessarily more "accurate"
- Allows for modeling of secondary factors

Statistical Downscale

Exposure: secondary factors

Response Models

- Conceptual (qualitative)
- Qantitative (wide range of complexity)

Examples of secondary factors

- Sea level rise
- Hydrology
- Fire regime
- Vegetation changes
- Topography
- Snow pack
- Sea ice

Secondary factors: sea level rise bathtub model

Skagit Bay - areas at risk for inundation

Secondary factors: sea level rise Complex responses modeled

Exposure analysis for assessing vulnerability of coastal wetlands to sea-level rise (wetlands are sensitive to tides/elevation)

- Initial Condition
- 11.2-inch SLR
- 27.3-inch SLR
- Diked areas

USGS generating hydrological models for large basin in US Coastal Plain

Climate change

Hydrology & Water temp

Species and locations most affected?

Mary Freeman et al. (USGS)

- Examined climate and non-climate stressor
- Used downscaled projections to examine the potential hydrological shifts
- Parameterized model with expert opinion
- Bayesian belief networks populated to understand influence of climate change vs. non-climate stressors

Secondary factors: fire regime

 Reduced snow pack and earlier snow melt can produce bigger, more frequent fires

And/or

 Fuel production may decline and drive down fire frequency

CSIRO PUBLISHING

www.publish.csiro.au/journals/ijwf

International Journal of Wildland Fire 2010, 19, 903-913

Future climate affects management strategies for maintaining forest restoration treatments

Corinne Diggins^A, Peter Z. Fulé^{A,C}, Jason P. Kaye^B and W. Wallace Covington^A

Secondary: dynamic veg models

- Niche-based modeling to understand vegetation response to changing climate
 - Uses empirical physiological characteristics to model
 - Can link to GCMs (but with caution)
 - Excludes some ecosystem types (e.g., wetlands)
- Exposure or sensitivity?

Tools/Resources for Relevant Information

- DOI Climate Science Centers (CSCs) and Landscape Conservation Cooperatives (LCCs)
 - CSCs will deliver basic climate impact science to LCCs
 - LCCs will link science with conservation delivery
- ClimateWizard
- SLAMM
- SNAP (Scenarios Network for Alaska Planning)

Considerations for Ecological Response Models

Choice of models

- Depends on the species, habitats, ecosystems of concern (including scale)
- Depends on the types of questions being asked
- Depends on end-user's needs

Limitations of response models

- Overly-simplified (e.g., may ignore factors such as interactions between species; nonlinear, complex responses; other factors)
- Data availability varies
- Transferability across regions and scales

Break-out: Assessing Exposure